Wednesday, April 29, 2020
Science Is A Source That Continues To Radically Improve The State Of M
Science is a source that continues to radically improve the state of mankind. It has allowed for advances in production, transportation, and even entertainment, but never in history will science be able to so deeply affect our lives, as genetic engineering will certainly do. Genetic engineering is a safe and powerful tool that will bring forth amazing results, specifically in the field of medicine. It will bring in a world where gene defects, bacterial disease, and even aging are a thing of the past. The new science of genetic engineering aims to take a dramatic short cut in the slow process of evolution (Stableford 25). In essence, scientists aim to remove one gene from an organism's DNA, and place it into the DNA of another organism. This would create a new DNA strand, full of new encoded instructions; a strand that would have taken Mother Nature millions of years of natural selection to develop. The possibilities of genetic engineering are endless. Once the power to control the instructions, given to a single cell, are mastered anything can be accomplished. For example, insulin can be created and grown in large quantities by using an inexpensive gene manipulation method of growing a certain bacteria. This supply of insulin is also not dependant on the supply of pancreatic tissue from animals. Recombinant factor VIII, the blood clotting agent missing in people suffering from hemophilia, can also be created by genetic engineering. Virtually all people who were treated with factor VIII before 1985 acquired HIV, and later AIDS. Being completely pure, the bioengineered version of factor VIII eliminates any possibility of viral infection. Other uses of genetic engineering include creating disease resistant crops, formulating milk from cows already containing pharmaceutical compounds, generating vaccines, and altering livestock traits (Clarke 1). In the not so distant future, genetic engineering will become a principal player in fighting genetic, bacterial, and viral disease, along with controlling aging, and providing replaceable parts for humans. Medicine has seen many new innovations in its history. The discovery of anesthetics permitted the birth of modern surgery, while the production of antibiotics in the 1920s minimized the threat from diseases such as pneumonia, tuberculosis and cholera. The creation of serums which build up the bodies immune system to specific infections, before being laid low with them, has also enhanced modern medicine greatly (Stableford 59). All of these discoveries however, will fall under the broad shadow of genetic engineering when it reaches its peak in the medical community. Many people suffer from genetic diseases ranging from thousands of types of cancers, to blood, liver, and lung disorders. Amazingly, all of these will be able to be treated by Genetic engineering, specifically, gene therapy. The basis of gene therapy is to supply a functional gene to cells lacking that particular function, thus correcting the genetic disorder or disease. There are two main categories of gene therapy: germ line therapy, or altering of sperm and egg cells, and somatic cell therapy, which is much like an organ transplant. Germ line therapy results in a permanent change for the entire organism, and its future offspring. Germ line therapy is not readily in use on humans for ethical reasons. However, this genetic method could, in the future, solve many genetic birth defects such as downs syndrome. Somatic cell therapy deals with the direct treatment of living tissues. Scientists, in a lab, inject the tissues with the correct, functioning gene and then re-administer them to the patient, correcting the problem (Clarke 1). Along with altering the cells of living tissues, genetic engineering has also proven extremely helpful in the alteration of bacterial genes. Transforming bacterial cells is easier than transforming the cells of complex organisms (Stableford 34). Two reasons are evident for this manipulation: DNA enters, and functions easily in bacteria, and the transformed bacteria cells can be easily selected out from the untransformed ones. Bacterial bioengineering has many uses in our society, it can produce synthetic insulins, a growth hormone for the treatment of dwarfism and interferons for treatment of cancers and viral diseases (Stableford 34). Throughout the centuries disease has plagued the world, forcing everyone to take part in a virtual lottery with the agents of death (Stableford 59). Whether viral or bacterial in
Subscribe to:
Posts (Atom)